New Speed Records for Montgomery Modular Multiplication on 8-Bit AVR Microcontrollers
نویسندگان
چکیده
Modular multiplication of large integers is a performancecritical arithmetic operation of many public-key cryptosystems such as RSA, DSA, Diffie-Hellman (DH) and their elliptic curve-based variants ECDSA and ECDH. The computational cost of modular multiplication and related operations (e.g. exponentiation) poses a practical challenge to the widespread deployment of public-key cryptography, especially on embedded devices equipped with 8-bit processors (smart cards, wireless sensor nodes, etc.). In this paper, we describe basic software techniques to improve the performance of Montgomery modular multiplication on 8-bit AVR-based microcontrollers. First, we present a new variant of the widely-used hybrid method for multiple-precision multiplication that is 10.6% faster than the original hybrid technique of Gura et al. Then, we discuss different hybrid Montgomery multiplication algorithms, including Hybrid Finely Integrated Product Scanning (HFIPS), and introduce a novel approach for Montgomery multiplication, which we call Hybrid Separated Product Scanning (HSPS). Finally, we show how to perform the modular subtraction of Montgomery reduction in a regular fashion without execution of conditional statements so as to counteract Simple Power Analysis (SPA) attacks. Our AVR implementation of the HFIPS and HSPS method outperforms the Montgomery multiplication of the MIRACL Crypto SDK by up to 21.58% and 14.24%, respectively, and is twice as fast as the modular multiplication of the TinyECC library.
منابع مشابه
Efficient and Side-channel Resistant RSA Implementation For 8-bit AVR Microcontrollers
The RSA algorithm is the most widely used publickey cryptosystem today, but difficult to implement on embedded devices due to the computation-intense nature of its underlying arithmetic operations. Different techniques for efficient software implementation of the RSA algorithm have been proposed; these range from high-level approaches, such as exploiting the Chinese Remainder Theorem (CRT), dow...
متن کامل$μ$Kummer: efficient hyperelliptic signatures and key exchange on microcontrollers
We describe the design and implementation of efficient signature and key-exchange schemes for the AVR ATmega and ARM Cortex M0 microcontrollers, targeting the 128-bit security level. Our algorithms are based on an efficient Montgomery ladder scalar multiplication on the Kummer surface of Gaudry and Schost’s genus-2 hyperelliptic curve, combined with the Jacobian point recovery technique of Chun...
متن کامل\mu Kummer: Efficient Hyperelliptic Signatures and Key Exchange on Microcontrollers
We describe the design and implementation of efficient signature and key-exchange schemes for the AVR ATmega and ARM Cortex M0 microcontrollers, targeting the 128-bit security level. Our algorithms are based on an efficient Montgomery ladder scalar multiplication on the Kummer surface of Gaudry and Schost’s genus-2 hyperelliptic curve, combined with the Jacobian point recovery technique of Cost...
متن کاملHigh-speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers
This paper presents new speed records for 128-bit secure elliptic-curve Diffie-Hellman key-exchange software on three different popular microcontroller architectures. We consider a 255-bit curve proposed by Bernstein known as Curve25519, which has also been adopted by the IETF. We optimize the X25519 key-exchange protocol proposed by Bernstein in 2006 for AVR ATmega 8-bit microcontrollers, MSP4...
متن کاملLow-Weight Primes for Lightweight Elliptic Curve Cryptography on 8-bit AVR Processors
Small 8-bit RISC processors and micro-controllers based on the AVR instruction set architecture are widely used in the embedded domain with applications ranging from smartcards over control systems to wireless sensor nodes. Many of these applications require asymmetric encryption or authentication, which has spurred a body of research into implementation aspects of Elliptic Curve Cryptography (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013